Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Occup Environ Med ; 65(6): 521-528, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2258872

ABSTRACT

OBJECTIVE: The aim of the study is to evaluate COVID-19 risk factors among healthcare workers (HCWs) before vaccine-induced immunity. METHODS: We conducted a longitudinal cohort study of HCWs ( N = 1233) with SARS-CoV-2 immunoglobulin G quantification by ELISA and repeated surveys over 9 months. Risk factors were assessed by multivariable-adjusted logistic regression and Cox proportional hazards models. RESULTS: SARS-CoV-2 immunoglobulin G was associated with work in internal medicine (odds ratio [OR], 2.77; 95% confidence interval [CI], 1.05-8.26) and role of physician-in-training (OR, 2.55; 95% CI, 1.08-6.43), including interns (OR, 4.22; 95% CI, 1.20-14.00) and resident physicians (OR, 3.14; 95% CI, 1.24-8.33). Odds were lower among staff confident in N95 use (OR, 0.55; 95% CI, 0.31-0.96) and decreased over the follow-up. CONCLUSIONS: Excess COVID-19 risk observed among physicians-in-training early in the COVID-19 pandemic was reduced with improved occupational health interventions before vaccinations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Longitudinal Studies , Pandemics , Health Personnel , Risk Factors , Immunoglobulin G
2.
QJM ; 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2281184

ABSTRACT

BACKGROUND: Genetic predisposition to COVID-19 may contribute to its morbidity and mortality. Because cytokines play an important role in multiple phases of infection, we examined whether commonly occurring, functional polymorphisms in macrophage migration inhibitory factor (MIF) are associated with COVID-19 infection or disease severity. AIM: To determine associations of common functional polymorphisms in MIF with symptomatic COVID-19 or its severity. METHODS: This retrospective case control study utilized 1171 patients with COVID-19 from three tertiary medical centers in the United States, Hungary, and Spain, together with a group of 637 pre-pandemic, healthy control subjects. Functional MIF promoter alleles (-794 CATT5-8, rs5844572), serum MIF and soluble MIF receptor levels, and available clinical characteristics were measured and correlated with COVID-19 diagnosis and hospitalization. Experimental mice genetically engineered to express human high- or low-expression MIF alleles were studied for response to coronavirus infection. RESULTS: In patients with COVID-19, there was a lower frequency of the high-expression MIF CATT7 allele when compared to healthy controls (11% vs. 19%, OR: 0.54 [0.41, 0.72], p < 0.0001). Among inpatients with COVID-19 (n = 805), there was a higher frequency of the MIF CATT7 allele compared to outpatients (n = 187) (12% vs. 5%, OR: 2.87 [1.42, 5.78], p = 0.002). Inpatients presented with higher serum MIF levels when compared to outpatients or uninfected healthy controls (87 ng/ml vs. 35 ng/ml vs. 29 ng/ml, p < 0.001, respectively). Among inpatients, circulating MIF concentrations correlated with admission ferritin (r = 0.19, p = 0.01) and maximum CRP (r = 0.16, p = 0.03) levels. Mice with a human high-expression MIF allele showed more severe disease than those with a low-expression MIF allele. CONCLUSIONS: In this multinational retrospective study of 1171 subjects with COVID-19, the commonly occurring -794 CATT7  MIF allele is associated with reduced susceptibility to symptomatic SARS-CoV-2 infection but increased disease progression as assessed by hospitalization. These findings affirm the importance of host genetics in different stages of COVID-19 infection.

3.
J Occup Environ Med ; 64(9): 788-796, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2018289

ABSTRACT

OBJECTIVE: This study aims to evaluate COVID-19 cases and vaccine responses among workers in the gaming/entertainment industry. METHODS: Participants provided detailed information on occupational risk factors, demographics, COVID-19 history, and vaccination status through questionnaire. Enzyme-linked immunosorbent assays were used to measure serum antiviral antibodies and neutralizing capacity. RESULTS: Five hundred-fifty individuals participated with n = 228 (41.5%) returning for follow-up. At least 71% of participants were fully vaccinated within 8 months of vaccine availability and COVID-19 rates declined concomitantly. Serum anti-spike IgG levels and neutralizing capacity were significantly (P < 0.001) associated COVID-19 history and vaccine type, but not occupational risk factors, and declined (on average 36%) within 5 months. Few vaccine nonresponders (n = 12) and "breakthrough" infections (n = 1) were noted. CONCLUSIONS: COVID-19 vaccination was associated with a marked decrease in infections; however, individual humoral responses varied and declined significantly over time.


Subject(s)
COVID-19 , Video Games , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Incidence , North America , Vaccination
4.
PLoS One ; 17(1): e0262657, 2022.
Article in English | MEDLINE | ID: covidwho-1639087

ABSTRACT

BACKGROUND: Tests for SARS-CoV-2 immunity are needed to help assess responses to vaccination, which can be heterogeneous and may wane over time. The plaque reduction neutralization test (PRNT) is considered the gold standard for measuring serum neutralizing antibodies but requires high level biosafety, live viral cultures and days to complete. We hypothesized that competitive enzyme linked immunoassays (ELISAs) based on SARS-CoV-2 spike protein's receptor binding domain (RBD) attachment to its host receptor, the angiotensin converting enzyme 2 receptor (ACE2r), would correlate with PRNT, given the central role of RBD-ACE2r interactions in infection and published studies to date, and enable evaluation of vaccine responses. METHODS AND RESULTS: Configuration and development of a competitive ELISA with plate-bound RBD and soluble biotinylated ACE2r was accomplished using pairs of pre/post vaccine serum. When the competitive ELISA was used to evaluate N = 32 samples from COVID-19 patients previously tested by PRNT, excellent correlation in IC50 results were observed (rs = .83, p < 0.0001). When the competitive ELISA was used to evaluate N = 42 vaccinated individuals and an additional N = 13 unvaccinated recovered COVID-19 patients, significant differences in RBD-ACE2r inhibitory activity were associated with prior history of COVID-19 and type of vaccine received. In longitudinal analyses pre and up to 200 days post vaccine, surrogate neutralizing activity increased markedly after primary and booster vaccine doses, but fell substantially, up to <12% maximal levels within 6 months. CONCLUSIONS: A competitive ELISA based on inhibition of RBD-ACE2r attachment correlates well with PRNT, quantifies significantly higher activity among vaccine recipients with prior COVID (vs. those without), and highlights marked declines in surrogate neutralizing activity over a 6 month period post vaccination. The findings raise concern about the duration of vaccine responses and potential need for booster shots.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Vaccines, Synthetic/administration & dosage , mRNA Vaccines/administration & dosage
5.
PLoS One ; 16(9): e0252849, 2021.
Article in English | MEDLINE | ID: covidwho-1403295

ABSTRACT

Reverse vaccinology is an evolving approach for improving vaccine effectiveness and minimizing adverse responses by limiting immunizations to critical epitopes. Towards this goal, we sought to identify immunogenic amino acid motifs and linear epitopes of the SARS-CoV-2 spike protein that elicit IgG in COVID-19 mRNA vaccine recipients. Paired pre/post vaccination samples from N = 20 healthy adults, and post-vaccine samples from an additional N = 13 individuals were used to immunoprecipitate IgG targets expressed by a bacterial display random peptide library, and preferentially recognized peptides were mapped to the spike primary sequence. The data identify several distinct amino acid motifs recognized by vaccine-induced IgG, a subset of those targeted by IgG from natural infection, which may mimic 3-dimensional conformation (mimotopes). Dominant linear epitopes were identified in the C-terminal domains of the S1 and S2 subunits (aa 558-569, 627-638, and 1148-1159) which have been previously associated with SARS-CoV-2 neutralization in vitro and demonstrate identity to bat coronavirus and SARS-CoV, but limited homology to non-pathogenic human coronavirus. The identified COVID-19 mRNA vaccine epitopes should be considered in the context of variants, immune escape and vaccine and therapy design moving forward.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Epitope Mapping , Amino Acid Motifs , Amino Acid Sequence , Coronavirus Infections/immunology , Humans , Immunoglobulin G/blood , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
6.
PLoS One ; 16(8): e0251114, 2021.
Article in English | MEDLINE | ID: covidwho-1378133

ABSTRACT

BACKGROUND: Countries across the globe have mobilized their armed forces in response to COVID-19, placing them at increased risk for viral exposure. Humoral responses to SARS-CoV-2 among military personnel serve as biomarkers of infection and provide a basis for disease surveillance and recognition of work-related risk factors. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to measure SARS-CoV-2 spike antigen-specific IgG in serum obtained from N = 988 US National Guard soldiers between April-June 2020. Occupational information, e.g. military operating specialty (MOS) codes, and demographic data were obtained via questionnaire. Plaque assays with live SARS-CoV-2 were used to assess serum neutralizing capacity for limited subjects (N = 12). RESULTS: The SARS-CoV-2 IgG seropositivity rate among the study population was 10.3% and significantly associated with occupation and demographics. Odds ratios were highest for those working in MOS 2T-Transportation (3.6; 95% CI 0.7-18) and 92F-Fuel specialist/ground and aircraft (6.8; 95% CI 1.5-30), as well as black race (2.2; 95% CI 1.2-4.1), household size ≥6 (2.5; 95% CI 1.3-4.6) and known COVID-19 exposure (2.0; 95% CI 1.2-3.3). Seropositivity tracked along major interstate highways and clustered near the international airport and the New York City border. SARS-CoV-2 spike IgG+ serum exhibited low to moderate SARS-CoV-2 neutralizing capacity with IC50s ranging from 1:15 to 1:280. In limited follow-up testing SARS-CoV-2 serum IgG levels remained elevated up to 7 months. CONCLUSIONS: The data highlight increased SARS-CoV-2 seroprevalence among National Guard vs. the local civilian population in association with transportation-related occupations and specific demographics.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/metabolism , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , COVID-19/epidemiology , COVID-19/virology , Demography , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Military Personnel , Odds Ratio , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Young Adult
8.
PLoS One ; 16(6): e0249499, 2021.
Article in English | MEDLINE | ID: covidwho-1270946

ABSTRACT

SARS-CoV-2 spike antigen-specific IgG and IgA elicited by infection mediate viral neutralization and are likely an important component of natural immunity, however, limited information exists on vaccine induced responses. We measured COVID-19 mRNA vaccine induced IgG and IgA in serum serially, up to 145 days post vaccination in 4 subjects. Spike antigen-specific IgG levels rose exponentially and plateaued 21 days after the initial vaccine dose. After the second vaccine dose IgG levels increased further, reaching a maximum approximately 7-10 days later, and remained elevated (average of 58% peak levels) during the additional >100 day follow up period. COVID-19 mRNA vaccination elicited spike antigen-specific IgA with similar kinetics of induction and time to peak levels, but more rapid decline in serum levels following both the 1st and 2nd vaccine doses (<18% peak levels within 100 days of the 2nd shot). The data demonstrate COVID-19 mRNA vaccines effectively induce spike antigen specific IgG and IgA and highlight marked differences in their persistence in serum.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , COVID-19 Vaccines/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/immunology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
9.
Nat Med ; 27(7): 1178-1186, 2021 07.
Article in English | MEDLINE | ID: covidwho-1217708

ABSTRACT

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Carrier State/immunology , Female , Humans , Immunity, Humoral , Kinetics , Length of Stay/statistics & numerical data , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL